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A B S T R A C T   

In forest management and science it is important to determine the drivers of tree growth and to quantify their 
relative importance with regard to forest site characteristics. The growth of individual trees depends on complex 
interactions of biotic and environmental drivers. Controlling the influence of biotic drivers (e.g. interspecific 
competition and bark beetles) is the main concern of forest management. However, large uncertainties emerge 
from environmental drivers and their impacts on tree growth. The aim of this study is to quantify the relative 
importance of environmental drivers (climate, soil, and terrain attributes) on the growth of Norway spruce trees 
(Picea abies (L.) Karst.). For that purpose, the relative basal area increment of individual spruce trees was 
modelled with a Boosted Regression Tree (BRT) approach. The approach is particularly suitable, since BRT 
quantify the relative predictor importance, taking nonlinearities and predictor variable interactions into 
consideration. We assume distinct differences in the growth responses to environmental drivers on three main 
soil unit classes (cambisol, podzol and waterlogged soils) in Saxony and Thuringia, Germany. The results of this 
study clearly demonstrate the importance of soil properties (available water capacity and sand content of the 
soil) on the growth of Norway spruce trees. Terrain attributes and water availability are crucial for Norway 
spruce growth on cambisol, podzol and waterlogged soils. Moreover, interactions among environmental drivers 
are more relevant on sites with cambisol as compared to podzol or waterlogged soils. Considering interactions 
between environmental drivers in the model led to significant differences in the identification of important 
environmental drivers. This observation was consistent among soil unit classes, especially for environmental 
drivers associated with water availability. Thus, the implementation of the results in growth models of high 
spatial resolution will support decision making in forest management, e.g. through identifying proper regions for 
spruce development and risk control.   

1. Introduction 

The long-term objective of forest management in Saxony and Thur-
ingia (Germany) is to maintain forest functions, such as timber use, 
forest conservation and recreational functions (Eisenhauer et al., 2016). 
Norway spruce (Picea abies (L.) Karst.) is one of the main tree species in 
Saxony and Thuringia and covers a forest area of 30–50%. With an 
increasing frequency of heat waves, storm damages and pathogens, 
health and productivity of Norway spruce stands is simultaneously 
decreasing (Ciais et al., 2005, Biedermann et al., 2019). In order to 

control the nature-based disaster risk and to develop forest management 
strategies it is important to determine the drivers of Norway spruce 
growth and to quantify their relative importance with regard to forest 
site characteristics. The growth of individual trees depends on complex 
interactions between biotic and environmental drivers (e.g. Spiecker, 
1999, Pretzsch, 2009). These complex interactions are rarely included in 
site-productivity models, especially considering environmental drivers 
related to terrain, soil and climate characteristics. Forest management 
considers or buffers the effects of biotic drivers, e.g. through thinning 
strategies. However, large uncertainties emerge from environmental 
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drivers and their effects on tree growth. Therefore, this study seeks to 
gain further insight in the relative importance of environmental drivers 
on the growth of Norway spruce trees. 

Norway spruce occurs in a wide range of areas: from high mountain 
ridges to the valleys in pure and mixed stands on a wide variety of soil 
types, terrain attributes and climatic conditions (Schmidt-Voigt, 1986). 
It is an ideal modeling species due to the heterogeneity of site charac-
teristics and the high abundance in forest areas. Thus, multiple studies 
observed the growth of Norway spruce trees in relationship to envi-
ronmental drivers in site productivity models, i.e. climate, terrain and 
soil attributes. These studies confirm that water availability significantly 
limits spruce growth (Neumann, 2001, van der Maaten-Theunissen 
et al., 2012, Pretzsch et al., 2014, Šrámek et al., 2019) as a result of 
high temperatures and low precipitation amounts (Brandl et al., 2014). 
The drought-sensitivity of Norway spruce is related to site elevation (i.e. 
altitude above sea level), where growth is temperature-limited on high 
elevated sites and water-limited on low-elevated sites (Ellenberg & 
Leuschner, 2011). In mountain areas, growth is negatively correlated 
with slope but positive with solar radiation (Rohner et al., 2016). 
Additionally, growth of Norway spruce substantially relies on nutrient 
availability (Albert & Schmidt, 2012, Mellert & Ewald, 2014). Soil 
properties determine tree growth, particularly due to different water 
holding capacities that buffer adverse growth conditions (Kirchen et al., 
2017). These examples demonstrate that growth of Norway spruce de-
pends on complex relationships between climate conditions, water 
availability and soil nutrients (Kirchen et al., 2017). As a consequence, it 
is rather unlikely that a single environmental driver adequately captures 
the spatio-temporal complexity of tree growth mechanisms (Brandl 
et al., 2014). It is therefore crucial to observe interactions between 
environmental drivers to achieve a higher accuracy of site-productivity 
models (Kohnle et al., 2014, Rohner et al., 2018) and thus a better un-
derstanding of spruce growth. 

Several environmental drivers jointly influence trees growth in nat-
ural forest systems. While most environmental drivers directly influence 
tree growth (e.g. solar radiation on crown and leave development), 
numerous indirect and interlinked influences significantly affect tree 
growth, primarily via soil and terrain attributes (e.g. water availability 
and nutrient supply). For dendroecologists, that is the primary reason to 
select proper sampling sites close to the ecological limits of tree growth. 
Therewith, a single growth regulator distinctly controls the tree growth 
and linear correlation approaches are suitable to estimate the strength of 
relationships (Fritts, 1976). Analyses along environmental gradients are 
popular to study the influence of multiple predictors on tree growth. For 
instance, the interlinked effect of temperature and precipitation has 
been frequently studied along altitudinal gradients (van der Maaten- 
Theunissen et al., 2012; Hartl-Meier et al., 2014; Wernicke et al., 
2020). Additionally, multiple regression approaches are appropriated 
methods to unravel the joint influences of different predictors on tree 
growth (Cook & Kairiukstis, 1990). Usually, site-productivity models 
incorporate the interaction of environmental drivers. Thereby, non- 
linear relationships and interactions of large-scale forest inventory 
data are considered as well (Albert & Schmidt, 2010, Rohner et al., 
2018). Contrary, a much more holistic approach with multiple possible 
interactions between a response variable, climate, soil and other po-
tential growth-limiting properties is reported in few studies (Aertsen 
et al., 2012, Brandl et al., 2014, Chakraborty et al., 2019). Important 
interactions were identified between temperature and precipitation 
(Albert & Schmidt, 2010, Brandl et al., 2014, Rohner et al., 2018), be-
tween temperature and drought among different soil characteristics 
(Chakraborty et al., 2019), as well as between soil type and nutrients 
(Aertsen et al., 2012). These studies revealed the importance of in-
teractions among environmental drivers on tree growth. However, a 
quantification of the importance of interactions in site-productivity 
models is still lacking. Therefore, we applied a boosted regression tree 
(BRT) approach on increment data of the German national forest in-
ventory (NFI, Thünen-Institute, 2019). BRT is a machine learning 

technique that explicitly includes all relevant interactions between 
environmental drivers. 

We examined the impact of the main environmental drivers, such as 
climate, terrain and soil attributes, on the basal area increment of spruce 
trees and modeled spruce growth separately for three common soil unit 
classes of Saxony and Thuringia (cambisol, podzol and water influenced 
soils). These soil unit classes differ substantially in their water holding 
capacity and nutrient availability (Amelung et al., 2018) but also in 
terms of the applied silvicultural strategies (Blanckmeister and Hengst, 
1971). For example, spruce stands at lower mountain ranges are often 
characterized by water influenced soil types since water shortage is a 
distinct problem at lower altitudes, where Norway spruce was planted 
outside its natural habitat. Hence, we expected that spruce growth re-
sponds differently on various environmental drivers dependent on the 
soil unit class. 

The overall aim of this study was to quantify the importance of in-
dividual environmental drivers and to highlight the relevance of in-
teractions between soil, terrain and climate attributes in a site- 
productivity model. Our BRT- approach pursued three main hypothe-
ses: [i] the most important environmental drivers for Norway spruce 
growth and their interactions include soil unit class; [ii] considering 
interactions among environmental drivers lead to an increasing accu-
racy in site productivity models; [iii] interactions of environmental 
drivers that indicate water limitation are crucial to consider in site- 
productivity models of Norway spruce. 

2. Material and methods 

2.1. Study area and data acquisition 

Decadal tree growth data originated from the repeated sampling 
campaigns of the German national forest inventory (NFI) 2002 and 2012 
within the federal states of Thuringia and Saxony, Germany. Forest data 
were sampled on a 2.83 × 2.83 km grid in Saxony and a 4 × 4 km grid in 
Thuringia, applying consistent angle count sampling (Thünen-Institute, 
2019). The climate in Thuringia and Saxony varies from arid lowlands to 
the humid mountain ranges of the Ore Mountains and the Thuringian 
Forest (highest elevation: Fichtelberg = 1215 m a.s.l., Großer Beerberg 
= 983 m a.s.l., respectively). Yearly mean temperature and precipitation 
sums ranged on average between 11.8 and 15.9 ◦C and 370–648 mm, 
respectively for the years 2002–2012. 

We developed a site productivity model to gain further insight in the 
dependency of the basal area increment of Norway spruce to environ-
mental drivers. The basal area increment was derived from the 
comprehensive databases of the NFI 2002 and 2012 (Thünen-Institute, 
2019). We calculated relative basal area increment (BAIrel) per tree by 
dividing the BAI (2002–2012) with the basal areas of trees measured 
during the NFI 2002. To use the BAIrel as the response variable in the 
site-productivity model was important to account for the relationship 
between the increment from 2002 to 2012 and the size variability 
among trees, also known as allometric relationship between size and 
growth (Anfodillo et al., 2013). Thus, we filtered the forest inventory 
data with respect to comparable allometric relationships (comparable 
tree sizes and ages), due to predominantly capture the environmental 
drivers in the response variable (BAIrel) instead of allometric relation-
ships. In total, BAIrel of 8019 trees from Saxony and Thuringia were 
included in the model. In this study, we use the terms spruce and Nor-
way spruce interchangeable. 

Data of environmental drivers were gathered from multiple sources 
(Table 1). Climate data (daily temperature and precipitation values) 
were derived from the regional climate information system (ReKIS, 
2019), a database comprising interpolated climate data originating from 
long-term climate station records, covering the entire study region on 1 
× 1 km raster cells. The mean temperature and the precipitation sums 
were calculated for growing seasons. The growing seasons were calcu-
lated annually for each cell of the ReKIS raster by applying the adjusted 
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formula of von Wilpert (1990). Hence, the first day of the growing 
season represents the average day of year including (a) the first day 
when a 7-day temperature mean exceeds 10 ◦C and (b) the first day of 
year when the moving windows exceeds 10 ◦C for 5 consecutive days. 
The growing season ends with the day of year when the temperature of a 
7-day moving window falls below 10 ◦C for 5 consecutive days with the 
latest possible day of year being day 279 (October 5th). 

The standardized precipitation index (SPI) is used to identify pre-
cipitation surpluses (i.e. humid conditions) and shortages (i.e. drought 
periods). The SPI is based on monthly precipitation sums from the ReKIS 
database and was calculated by applying the R-function “spi” from the 
R-package SPEI (Begueria & Vicente-Serrano, 2017). To account for the 
relevance of drought on the growth of spruce trees, we calculated the SPI 
based on the precipitation sums of 18 months prior to the focal month. 
Monthly SPI-values were averaged for the entire study period for each 
ReKIS-raster cell. The SPI is standardized and ranges between − 2 to +2 
standard deviations. Negative SPI-values describe sites that experienced 
drought and positive SPI identify sites that experienced humid condi-
tions (McKee et al., 1993). 

Terrain attributes are important drivers to quantify tree growth in 
site-productivity models (Ou et al., 2019, Seltmann et al., 2019). Owing 
to the drought sensitivity of spruce trees, we were particularly interested 
in terrain information that characterize water availability. Based on a 
digital elevation model (grid-cell size: 10 m), we computed the topo-
graphic wetness index (TWI) and the topographic solar radiation (soldir) 
via SAGA-GIS (“System for Automated Geoscientific Analyses”; Böhner 
& Selige, 2006, Conrad et al., 2015). The TWI describes the potential 
water availability of a site in relation to the up-slope area and the slope 
angle. High TWI values are related to downslope sites and valleys, where 
water availability is highest (Beven & Kirkby, 1979, Moore et al., 1991, 
Böhner & Selige, 2006). The topographic solar radiation combines in-
formation about the slope direction, the slope position and a lumped 
atmospheric transmittance (Böhner and Antonic, 2009; Hofierka and 
Suri, 2002; Wilson and Gallant, 2000). 

A comprehensive data set of soil parameters along the NFI sampling 
points is subject to ongoing research. However, the importance of soil 
properties on spruce growth motivated us to implement at least the data 
of the available water capacity (AWC) and grain sizes in the BRT. AWC 
values were inferred from the database presented in Schmidt-Walter 
et al. (2019). Grain sizes were implemented to achieve at least some 
indication for the water holding capacity of the respective soils (large 
amounts of sand represent weak holding capacities and vice versa). 

We also included a measure of forest mixture, i.e. species fraction per 
NFI-sampling point, to capture information about competition and thus 
light and nutrient regime as well as forest management strategy. 

2.2. Statistical analysis 

Boosted regression trees (BRT) were applied to quantify the relative 

importance of environmental drivers and their interactions on the 
growth of spruce trees. To test the relevance of different soil unit classes, 
we build individual BRT models for cambisol, podzol and water logged 
soils (WLS). BRT is a machine learning algorithm and a further devel-
opment of classic CART models (classification and regression tree 
models; Hastie et al., 2009). A BRT-model divides the data set of the 
response variable into groups of predictor variables (environmental 
drivers) where each group represented a branch of a regression tree. This 
modeling step was repeated multiple times (i.e. at least 1000 trees are 
built in a BRT as a rule of thumb; Elith et al., 2008), where the first tree 
was based on the original data and all subsequent trees on the residuals 
of the predecessor(s). Each of the trees combined a set of predictor 
variables that explained BAIrel. The selection of an environmental driver 
to this combined set allowed a quantification of the relative importance 
deduced from the relative count it was selected by the BRT. 

BRTs are characterized by their strong predictive performance and 
are independent to nonlinearity and heteroscedasticity of the input data. 
Therewith, BRTs are recommended model approaches for comprehen-
sive, differently scaled ecological datasets (De’ath, 2007, Elith et al., 
2008). Three model parameters influence the predictive performance of 
BRT and must be adjusted in a process of model development: (1) the 
learning rate, (2) tree complexity and the (3) bag fraction. The (1) 
learning rate (lr) controls the fractions of the data that are modeled in 
each tree, i.e. smaller learning rates lead to more trees within a BRT 
model. (2) Tree complexity (tc) determines the interaction depth within 
the BRT model, e.g. tc = 1 implies that only one (i.e. solely the most 
important environmental driver) is used in each modeling step, while 
the two most important environmental drivers and their interactions are 
used to model the dependent variable with tc = 2. Thus, tc represents a 
proxy for the interactions level that is used to model the dependent 
variable. Each BRT model was calculated for tc = 1 to tc = 5 in order to 
test hypothesis [ii]. Testing the predictive performance of BRT with an 
increasing number of tc-values provides insight in the relevance of in-
teractions among predictor variables (environmental drivers). Our 
approach is not to evaluate interactions between 5 environmental 
drivers but to focus on the most important interaction between 2 drivers. 
In each BRT-modeling step with tc ≥ 2, one of the environmental drivers 
has the highest explanation power. This means, a hierarchy is build up, 
from most to least important environmental driver and their in-
teractions. In order to interpret these interactions ecologically mean-
ingfull, it is most convenient to focus on the pair of environmental 
drivers with the highest interaction importance, even if more predictor 
variables were used to generate the modeling results. Relative interac-
tion importance was calculated within the BRT based on Friedman’s H- 
statistic (Friedman & Popescu, 2005) to assess the relative strength of 
interaction effects in non-linear models. Additionally, by comparing the 
relative importance of environmental drivers among models with 
different tc (e.g. tc = 1 and tc = 3) we observed the extent of interaction 
importance per environmental driver. The (3) bag fraction (bf) repre-
sents the fraction of training data that was randomly selected in each 
modeling step. 

In the process of model development we tested the optimal combi-
nation of lr (tested options: lr = 0.01, 0.005, 0.001, 0.0005, and 0.0001) 
and bf (tested options: bf = 0.5, 0.6, and 0.7) by comparing the pre-
diction error of various model setups. Results of these tests for all soil 
classes converged for ideal lr and bf values at lr = 0.1 and bf = 0.7. To 
account for the stochastic behavior of the BRT-algorithm, we computed 
the BRT model (lr = 0.1; bf = 0.7) 100 times, observing different tc- 
values to quantify the importance of interactions (tc = 1, 2, 3, 4, and 5). 

We calculated analysis of variance with Tukey post hoc test to 
evaluate the relevance of interactions by comparing the explained de-
viances of BRT among models with different tc-values. In like manner, 
we examined the effect of interactions on the variable importance of the 
environmental drivers of the different BRTs (tc = 1 to tc = 5). The sig-
nificance levels was set to α = 0.05. 

All analyses were conducted within the R-environment 3.6.1 (R Core 

Table 1 
Environmental drivers used as predictor variables in the BRT models. Mean ±
standard deviations of the environmental drivers per soil unit classes are sum-
marized in Table S2.  

Environmental driver Abbreviation Unit Data 
source 

Temperature mean Temp ◦C/growing 
season 

ReKIS 

Precipitation sum Precip mm/growing 
season 

ReKIS 

Standardized precipitation 
index 

SPI  ReKIS 

Solar radiation soldir kWh m− 2 SAGA-GIS 
Topographic wetness index TWI  SAGA-GIS 
Available water capacity AWC cm3

H2O cm-3
Soil NFI 

Sand content of the soil Sand % NFI 
Species fraction Spec_frac % NFI  
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Team, 2019), using the packages ‘dismo’ (Hijams et al., 2017) and ‘gbm’ 
(Greenwell et al., 2019). 

3. Results 

We identified various relevant drivers for BAIrel of Norway spruce 
trees among soil unit classes. The environmental drivers with the highest 
average relative contribution to BAIrel were TWI, temperature and pre-
cipitation on cambisol soils (32.3%, 25.7%, and 9.8%; respectively); 
TWI, solar radiation and SPI on podzol soils (31.9%, 26.6%, and 12.9%; 
respectively); and TWI, AWC and temperature on WLS (20.6%, 17.4%, 
and 13.5%; respectively; Fig. 1). 

The explained deviations differed significantly between models with 
increasing interaction depth for all soil unit classes (cambisols: F(4,495) 
= 13311, p < 0.0001; podzol: F(4,495) = 2446, p < 0.0001; WLS: F 
(4,495) = 26612, p < 0.0001) (Fig. 2). BRT with tc = 1 explained a 
significantly smaller amount of deviation than with tc = 2 or higher for 
all soil unit classes (Tukey post-hoc test: p < 0.0001; for all soil classes). 
These results highlighted that the consideration of interactions between 
environmental drivers in site productivity models enhanced model ac-
curacy and thus predictive performance. 

To quantify the importance of interactions, we calculated the dif-
ference between the relative variable importance of the BRT-models 
without (tc = 1) and with variable interactions (tc = 3). We found 
that TWI had –23.8% (tc1 = 14.0%, tc3 = 37.8% relative importance) 
and − 6.3% (tc1 = 16.2%, tc3 = 22.5% relative importance) lower 
relative importance on cambisol and WLS in BRT with tc = 1 than with 
tc = 3. This means that TWI was underestimated on these soil unit 
classes in BRT without the consideration of interactions. On podzol, TWI 
revealed only a 0.4% higher relative importance in BRT with tc = 1 as 
compared to BRT with tc = 3. Furthermore, we observed a decreasing 
influence (-14.5%) of the relative importance of AWC without interac-
tion in comparison to a three-way-interaction on cambisol and an 
increasing influence of solar radiation on podzol (+16.5%; Fig. 3; 
Fig. S2). These results show that considering interactions between 
environmental drivers in site-productivity models has the potential to 
enhance the explanation power and to provide more detailed environ-
mental – growth relationships. 

It has been demonstrated that particularly TWI, temperature and 
precipitation controlled BAIrel of Norway spruce (Rohner et al., 2016, 
2018, Schmidt-Walter et al., 2019). Our results, however, indicated a 
rather non-uniform and highly variable influence of the mentioned main 
drivers (TWI, temp, prec) on BAIrel of spruce, stocking on the three soil 

Fig. 1. Mean relative importance of environmental drivers on BAIrel per soil 
unit class (cambisol, podzol and WLS: waterlogged soils). The mean relative 
importance values result from 100 model repetitions of BRT across tree 
complexity values tc = 1 to tc = 5. Abbreviations of environmental drivers are 
presented in Table 1. 

Fig. 2. Relationship between tree complexity (tc) and mean explained devia-
tion of the BRT-model repetitions (n = 100) per soil unit class (cambisol, podzol 
and WLS: waterlogged soils). The increased explained deviations from tc = 1 to 
tc = 2 mean that BRT considering an interaction between two predictor vari-
ables (tc = 2) have a higher explanatory power than those without the 
consideration of interactions (tc = 1). Thus, interactions between predictor 
variables are more relevant on cambisol soils as compared to podzol soils 
and WLS. 

Fig. 3. Effect of BRT with interactions (tc = 3) on the variable importance of 
significant growth drivers of Norway spruce per soil unit class as comparison to 
BRT without interactions (tc = 1). The abbreviations of environmental drivers 
are explained in Table 1. Mean relative importance of the three focal envi-
ronmental drivers is higher when considering interactions in the model (tc = 3) 
with the exception of TWI on podzols and precipitation on cambisols. 
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unit classes (Fig. 4, Fig. S1). The illustrated results considered a three- 
way interaction (tc = 3) due to model accuracy purposes (for further 
details we refer to Fig S1). 

A consecutive increase in TWI induced a positive growth response of 
BAIrel for trees on cambisols and a distinct BAIrel response for trees 
stocking on podzols characterized by an intermediate TWI ~ 5. On WLS, 
optimal TWI conditions were observed between TWI = 5–6, even though 
the response was generally less pronounced than on cambisol and 
podzol (Fig. 4a). Moreover, spruce BAIrel decreased on cambisols with 
rising temperatures. On podzol soils, the response of BAIrel was less 
pronounced as compared to the response on cambisol soils with an op-
timum BAIrel at approximately 13.5 ◦C. On WLS, highest BAIrel were 
inferred for trees on sites with a temperature of ca. 15 ◦C (Fig. 4b). 
Further, we observed a positive relationship of spruce BAIrel with 
increasing precipitation sums on cambisol and podzol soils. On WLS, 
BAIrel revealed the strongest response on sites with precipitation sums 

between approximately 460–500 mm (Fig. 4c). Thus, the relative 
importance and therein the effect of various environmental drivers on 
BAIrel depends on the respective soil unit class. The most important in-
teractions between environmental drivers differed in dependence to soil 
unit class (Table 2). To model BAIrel, we found that decadal temperature 
sums and AWC were most important on cambisols, TWI and SPI on 
podzols and the interaction between sand content and SPI on WLS 
(Fig. 5a–c, respectively). 

Highest BAIrel was observed on sites with cambisol soils and an 
interaction between low temperatures and high values of AWC (Fig. 5a). 
On podzol soils the highest BAIrel was observed on sites with interme-
diate TWI and high SPI-values, i.e. under humid conditions (Fig. 5b). 
Low sand contents on WLS indicated high BAIrel on sites with interme-
diate SPI-values. Increased spruce growth was also observed on WLS- 
sites that were characterized by an elevated sand concentration under 
humid condition, i.e. high SPI-values (Fig. 5c). These results indicate 

Fig. 4. Fitted BAIrel values in relationship to (a) TWI, (b) temperature mean and (c) precipitation sum during the growing season per soil unit class (color code). The 
figure shows a varying response of spruce BAIrel to similar environmental drivers, dependent on the respective soil unit class. 

Table 2 
Average relative interaction importance between the two most important environmental drivers per soil unit class (BRT with tc = 3). Bold interactions are presented in 
Fig. 5. Abbreviations: the reader is referred to Table 1.  

Soil unit class Env. driver Temp Prec SPI Soldir TWI AWC Sand Spec_fraq 

Cambisol Temp – 0.11 0.9 0.02 0.82 0.19 0.07 – 
Cambisol Prec – – 0.03 – 0.04 0.09 0.47 – 
Cambisol SPI – – – – 0.01 0.11 0.01 0.01 
Cambisol Soldir – – – – 0.05 0.07 – – 
Cambisol TWI – – – – – 0.25 0.16 – 
Cambisol AWC – – – – – – 0.01 0.03 
Cambisol Sand – – – – – – – – 
Cambisol Spec_fraq – – – – – – – – 
Podzol Temp – – – – 0.12 0.01 0.01 – 
Podzol Prec – – – – 0.12 – – – 
Podzol SPI – – – – 0.14 – – 0.03 
Podzol Soldir – – – – – 0.01 0.01 – 
Podzol TWI – – – – – 0.06 0.01 – 
Podzol AWC – – – – – – – – 
Podzol Sand – – – – – – – – 
Podzol Spec_fraq – – – – – – – – 
WLS Temp – – – – – 0.01 0.05 – 
WLS Prec – – – – 0.02 – 0.04 – 
WLS SPI – – – – 0.01 0.04 0.18 – 
WLS Soldir – – – – – 0.01 0.01 – 
WLS TWI – – – – – – 0.12 0.02 
WLS AWC – – – – – – – 0.02 
WLS Sand – – – – – – – 0.01 
WLS Spec_fraq – – – – – – – –  
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that interactions between environmental drivers depend on the respec-
tive soil unit class, highlighting that some environmental drivers with 
low relative importance (e.g. sand content) are relevant explanatory 
variables in interaction with another environmental driver (e.g. SPI). 

4. Discussion 

The primary aim of this study was to depict important environmental 
drivers for Norway spruce BAIrel on three soil unit classes by applying a 
site-productivity model based on BRT. Our analyses of the NFI data 
resulted in two conclusions about the growth of spruce trees in Saxony 
and Thuringia, Germany. First, terrain attributes and water availability 
revealed the highest relative variable importance to explain spruce 
growth on all three soil unit classes but with varying responses of spruce 
growth. Second, we found strong evidence that interactions among the 
environmental drivers significantly influence the BAIrel among all three 
soil unit classes. Most important interactions were observed among 
environmental drivers influencing the water availability of Norway 
spruce. 

First, terrain attributes (TWI and solar radiation) showed highest 
relative importance on Norway spruce BAIrel across the three observed 
soil unit classes in Saxony and Thuringia, Germany. It has been 
demonstrated that particularly TWI, temperature and precipitation 
controlled BAIrel of Norway spruce (Rohner et al., 2016, 2018, Schmidt- 
Walter et al., 2019). Our findings are also consistent with recent studies 
using machine learning approaches that identified terrain attributes (Ou 
et al., 2019) and the water balance in the soil (Brandl et al., 2016) as 
most important drivers for tree growth. These observations are also 
consistent with studies using linear or additive modeling approaches, 
showing that terrain and soil moisture attributes (Seynave et al., 2005, 
Rohner et al., 2018, Rabbel et al., 2018) but also climatic drivers are 
most relevant for tree growth (Albert & Schmidt, 2010, Hlásny et al., 
2017, Chakraborty et al., 2019). Forest management strategies apply 
these relationships. For example, spruce stands were cultivated on sites 
with higher levels of water availability, especially under warmer climate 
conditions in Saxony and Thuringia (Wagenknecht & Belitz, 1959, 
Eisenhauer et al., 2016). Examinations of NFI-data documented an 
overall positive effect of increasing water availability and temperature 
on spruce growth (Albert & Schmidt, 2010, Brandl et al., 2014, Rohner 

et al., 2018, Chakraborty et al., 2019). 
Growth responses of Norway spruce to environmental drivers 

depend strongly on differences between soil unit classes. The observed 
soil unit classes differ in their soil structure, in the ability to store re-
sources, in the possible rooting habitat for spruce trees and thus in their 
potential to provide water, which is a crucial environmental driver for 
Norway spruce growth (Pretzsch et al., 2014, Kirchen et al., 2017, 
Šrámek et al., 2019). The most distinct differences in the growth 
response among the three soil unit classes were revealed with mean 
temperature, precipitation sums and TWI. The non-uniform response of 
spruce growth to TWI on sites with cambisol (e.g. several BAIrel-peaks as 
response to TWI, Fig. 4a) could be influenced by the high abundance of 
cambisol soils that cover a wide ecological range in Saxony and Thur-
ingia (78% of observed trees were found on cambisol, 12% on WLS, and 
10% on podzol). Thus, the variability of site conditions may be larger on 
cambisols as compared to podzols and WLS, e.g. in terms of terrain, 
water availability and climate conditions (Moldenhauer et al., 2013). In 
this perspective, podzols are supposed to be the main soil class at sandy 
sites that are characterized by TWI ~ 5. That implies an increased 
drought sensitivity and positive response to high precipitation amounts 
of the stocking trees, due to the weak water holding capacity of podzols. 
WLS are characterized by highest water holding capacities among the 
three soil unit classes and provide a suitable habitat for Norway spruce 
in lower mountain ranges where average temperatures are greater as 
compared to sites at higher elevations. Thus, spruce has higher BAIrel on 
WLS-sites with high average temperatures, whereas the BAIrel response 
on warm temperatures on cambisols is opposite. These sites with high 
average temperatures are found in the lower mountain ranges in Saxony 
and Thuringia, i.e. outside of the natural habitat of spruce trees. Cam-
bisol soils occur primarily in higher elevations on sites with low tem-
peratures, i.e. within the natural habitat of spruce trees (Ellenberg, 
1988). 

Spruce growth on cambisol and podzol soils increases with 
increasing TWI, i.e. BAIrel was higher on mid- and down-slope sites as 
compared to up-slope or mountain ridge sites. Because of water runoff, 
water availability on up-slope sites is frequently lower as compared to 
mid- and down-slope sites. Thus, water limitation and subsequently 
growth suppression is higher on upslope and mountain ridge sites as 
compared to mid- and down-slope positions. Interestingly, we revealed a 
peak in BAIrel for podzol sites at mid-slope position. This result was 
surprising because podzol soils have a lower water holding capacity as 
compared to cambisol soils (Amelung et al., 2018) and thus were ex-
pected to foster high levels of BAIrel on down-slope sites. The different 
growth responses per environmental driver confirm that it is important 
to consider soil properties in site-productivity models. Further studies 
are required to investigate specific characteristics of soil-growth het-
erogeneity in forest systems. 

Second, our results strongly corroborated the consideration of 
predictor-interactions in site-productivity models. We found a higher 
model accuracy and detailed insights in the importance of environ-
mental drivers on tree growth when considering at least 2 interactions. 
This is in line with recent studies using machine learning algorithms 
describing the importance of interactions between climate, site condi-
tions and competitive effects on tree growth (Chakraborty et al., 2019, 
Ou et al., 2019). But model accuracy did not further increase in models 
where 3 or more interactions were considered. It means that interactions 
between 3 or more environmental drivers explain spruce growth as good 
as interactions between 2 environmental drivers. This finding can be 
related to the classic niche theory, stating that growth of an organism 
depends only on few important drivers (Fritts, 1976, Stine, 2019) out of 
the combined influences of the habitat (i.e. the multitude of environ-
mental and biotic drivers; Hutchinson, 1957). Our findings confirmed 
that especially the joint influence of climate and soil properties induce 
even stronger responses of tree growth as compared to the pure single 
effect of climate or soil property. These findings are related to results 
from tree-interaction studies from Switzerland (Chakraborty et al., 

Fig. 5. Interaction plots presenting the two most relevant interactions of 
environmental drivers on spruce BAIrel (Rel. BAI) per soil unit class (a) cam-
bisol-, (b) podzol and (c) waterlogged soils (WLS; for all soil unit classes: BRT 
with tc = 3). Abbreviations: the reader is referred to Table 1. 
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2019), underlying the complexity of forest ecosystems. 
Climatic drivers were more relevant as compared to soil character-

istics due to indirect effects, i.e. interactions with soil parameters 
(Chakraborty et al., 2019). Similarly, when considering interactions we 
found an increase in relative importance of TWI, mean temperature and 
precipitation sums in seven out of nine models of different soil unit 
classes. Some important processes that influence tree growth, above all 
the water availability, result from complex interactions between envi-
ronmental drivers and show temporal and spatial heterogeneity. 
Drought as the most important limitation for spruce growth (Bréda et al., 
1995, Pretzsch & Dieler, 2010) depends on multiple environmental and 
biotic factors, e.g. temperature, precipitation, terrain attributes, alti-
tude, soil type, forest structure and species mixing (e.g. Bouriaud & 
Popa, 2009, van der Maaten-Theunissen et al., 2012, Rötzer et al., 
2017). In addition to drought, recent studies emphasized primarily the 
relevance of temperature interactions with water availability (Brandl 
et al., 2014, Ou et al., 2019), interactions of climatic drivers with 
elevation gradients (van der Maaten-Theunissen et al., 2012) and in-
teractions of climatic drivers with competition (Piutti & Cescatti, 1997, 
Wright et al., 2018). Thus, the consideration of interactions between 
various environmental drivers in site-productivity models helps to gain a 
better understanding of tree growth, especially with higher spatial 
precision and in relation with forest community dynamics. 

Our results show that interactions between environmental drivers 
are crucial to model the site-productivity of Norway spruce trees on 
different soil unit classes. The strong influence of interactions on sites 
with cambisol soils and the overall underestimation of water-availability 
drivers in models that do not consider interactions was striking, espe-
cially given the emphasis on the high relevance of these drivers in 
existing published literature about the growth of Norway spruce. The 
documented relevance of interactions between environmental drivers 
and their soil unit class – dependency suggest that site-productivity 
models may further improve the prediction ability of Norway spruce 
growth pattern, e.g. in studies that observe drought scenarios. Based on 
the presented analytical framework using the comprehensive data 
sources of the NFI we suggest incorporating site-specific details and 
interactions between environmental drivers in site-productivity models. 
Furtheron, the relevance of biotic drivers (e.g. competition) should be 
predicted based on the resulting interactions of our model, e.g. the 
competitive changes that result during thinning strategies. Forest man-
agement strategies aim to identify optimal growth regions for Norway 
spruce in dependency of changing environmental conditions (e.g. 
through climate change) with the long-term objective to secure the 
growth potential and control the nature-based disaster risk of Norway 
spruce on large forest areas in Saxony and Thuringia. 
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